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SUMMARY

The approximate formula of a linearized solution for the pressure

field generated by a moderate rate of heat release is given. The anal-

ogies between the pressure waves generated by heat release and those

generated by (1) mass release, (2) piston motion, or (3) a two-dlmensional

body in a supersonic stream are established analytically. The exact

solution of an idealized problem in which a finite amount of heat is

released uniformly at a section of a tube with a given rate, large or

small, is also constructed. Though this idealized setup can be only

approximately fulfilled in practice, the analysis does give an answer

to a fundamental question: Given the rate of heat release at a section

of a tube, how strong is the shock wave generated? A similar analysis

is made for the pressure waves generated by a point source in three

dimensions. Some applications of the theory are given.

INTRODUCTION

One of the basic problems in combustion aerodynamics is: What are

the dynamic effects produced in a medium as a result of heat release in

the medium? In particular, how strong are the pressure waves generated

by heat release and to what extent are they important in a specific

problem? Such questions arise naturally in the study of the spreading

of autolgnltion, the transient development of detonation wave, ignition

by compression, and many other time-dependent problems. The problem of

estimating the pressure generated by heat release also occurs in other

fields, for example, in the study of spark discharge and thermally driven
acoustical oscillation as well as of the mechanical effects ("blast")

produced in an atomic explosion (ref. 1).

The basic mechanism by which pressure waves are produced by heat

addition is simply this: When heat is added to a volume of gas, the

density of the gas is, in general, reduced. This causes an expansion

of the volume occupied by the heated gas. The expansion of this volume

produces the pressure waves.
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To see this in a more quantitative manner, it is necessary to write

down the fundamental equations governing the motion of the gas. let

p, p, T, and _ be, respectively, the pressure, density, temperature

and velocity vector of the flow, all being some functions of the position
• __>

vector r and time t. let R and Cv be the gas constant and specific

heat at constant volume of the gas, both of which will be assumed constant

in this preliminary study. The equations of continuity, momentum, and

energy are

i D_m+ V . u = 0 (m)
pDt

--_+-ivp --o (lb)
Dt p

D ,t)Cv _ (l°ge =
(lc)

where D represents the Stokes' derivative and q[9,t) is the rate
Dt

of heat release per unit mass of the medium at r and at the instant t.

When heat is added into the medium from an external source, q may be

considered as given and equations (la), (lb), and (lc) together with the

equation of state

p = _R_ (Id)

form a system of four equations which govern the four unknowns

T, and u.

P, P,

Now it is observed that the rate of expansion of a given volume v

of gas considered as a free body is measured by u . nds where s

the bounding surface of the volume and _ is the outward-drawn normal.

Hence, by Gauss' theorem, it is also equal to

is

It then follows immediately from continuity equation (la) that whenever

(_D0)there is a change of density _ there will be a change of the

volume. Now, when heat is added to the medium, there will, in general,
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be a change of pressure and density in accordance with energy equa-

tion (lc). (The relative amount of pressure change and density change

resulting from heat addition can in principle always be determined in

any specific problem by solving equations (1) Jointly.) The change in

density produces a change in volume occupied by the heated gas, which

in turn generates the pressure waves.

It should be remarked that _hen heat is not added into the medium

from external sources but is released by the fluid particles themselves

the rate of heat release q must be considered as unknown and an addi-

tional equation is required to describe its variation. In combustion,

q is usually given as a function of the local temperature. In other

cases, the rate of heat release of the fluid particles is specified.

In any event, the system of equations (1) will then be considerably

more complicated than it appears to be.

Finally, one notes that the term Cv loge(_) in equation (lc) is

directly related to the entropy of the gas by the formula

S - So = Cv log e I_o)_)IpPo 7 (2)

where the subscript o denotes some reference state and S is the

entropy of the gas.

For a moderate rate of heat release, the system of equations (i)

can be linearized. The linearized theory is given in the following

section where a "reduction theorem" is derived which enables one to

reduce the problem of heat release in a tube to an equivalent problem

of piston motion. An application of this reduction theorem to the

one-dimensional case is given in the section entitled "APPLICATION OF

REDUCTION THEOREM." When the rate of heat release is high, the

linearized theory is no longer valid. In the section entitled "EXACT

SOLUTION," an exact solution is obtained for the case when heat is
released uniformly at a section of the tube at a constant rate (large

or small). The corresponding problem in three dimensions is given in

the section entitled "THREE-DIMENSIONAL THEORY." Some applications of

the theory are also given.

The present investigation was conducted at the Department of Aero-

nautics of The Johns Hopkins University under the sponsorship and with

the financial assistance of the National Advisory Committee for Aero-

nautics. The author is greatly indebted to Drs. Francis H. Clauser and

Leslie S. G. Kov_sznay for a few stimulating discussions and for their

encouragement and to Dr. M. V. Morkovln for his interest and comments.
The author would like to acknowledge his gratitude to Dr. Harold Mirels

of the NACA Lewis Fli_It Propulsion Laboratory who made several most
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who carried out someof the calculations and to Miss Vivian O'Brien and
Mrs. Sture Karlsson for their assistance in the preparation of the
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SYMBOLS

A

a

Cv, Cp

E

F,F1,F2,F3,G

H(x) ,H(t)

L

M

n

P

Q

%

}

R

r

r v

cross-sectional area of a tube

velocity of sound

specific heats at constant volume and constant pressure,

respectively

energy per unit volume

some arbitrary functions

step function

a characteristic length

Mach number

mass injected per unit volume per unit time

normal to a control surface

pressure

rate of heat release, energy/sec

constant rate of heat release (eqs. (46))

heating value of a mixture, energy/mass

rate of heat release per unit mass, energy/mass/sec

gas constant of a mixture

radial distance

distance between field point and source point
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r

r c

r 1

S

St

S

T

T*

t

U

u

u

u C

ur

u 1

Vs

V

x,y,z

>,: %iCy

radius vector

radius of contact surface

radius of spherical shock wave

entropy

transformation velocity (i.e., flame speed)

bounding surface of volume v

temperature

temperature tending to _ in such manner that

_*T* = Constant

time

superficial velocity of a piston (see eq. (15))

velocity (in one-dimensional case)

velocity vector

velocity of contact surface

radial velocity (in three-dimensional case)

velocity of flow immediately behind shock

velocity of propagation of shock wave

volume enclosed by control surface

Cartesian coordinate of a point

rate constant in parabolic heat-release law, equa-

tion (47), energy/sec5
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6

5(x)

_(x,y,z)

E

V

P

mo

_(y,z,t)

Subscripts:

C

1

2

increment of or change of

5-function in one dimension

5-function in three dimensions

any number, value of x

vector normal to side of tube

coordinates of source point

density

density tending to zero in such a manner that

p*T* = Constant

rate of heat release per unit area, energy/area/sec

constant rate of heat release per unit area (eq. (20))

rate of heat release at x = _, energy/area/sec

state at contact surface

undisturbed state (i.e., that ahead of shock wave)

except in case of variables representing rate of
heat release _ and Q (see list of main symbols)

state immediately behind shock wave (which is also

that immediately ahead of flame front in one-

dimensional case)

state immediately behind flame front

LINEARIZED TKEORY AND SOME ANALOGIES

Consider a medium in a uniform state with pressure Po, density

and temperature To • After the heat is added, the pressure, density,

temperature, and velocity induced can be written as

PO '
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P = Po + 5p

p= po+Bp

T = T o + 5T

53U =

If the rate of heat release is not too high, B_pp 5p 5T and
PO' P-_' To'

where ao is the speed of sound in the undisturbed medium.

can then be llnearlzed and

_7 p o

_ t'\TPo/ _-_ _\Po) CpTo

(3a)

(3b)

(3°)

(3d)

15@___z,l<< i
a o

Equations (i)

(4a)

(4b)

(4c)

Lp + Lo __L• (_d)
Po Po To

Eliminate 50/0o from equations (4a) and (4c) :

_sp._ _ q
Cpto

The equations governing the pressure and velocity fields are then given

by equations (4b) and (5). Once the pressure field is known, the density

and temperature field can be determined from equations (4c) and (4d) and

the entropy spottiness from the linearized form of equation (2),

8s_ 5p 5_ (6)
Cv Po 7 p--_

qL
It is now clear that "moderate rate of heat release" means << i

CpToao

where L is some characteristic length in the problem, for example, a

length characterizing the dimension of the heating zone.
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It is interesting to note that as far as the pressure and velocity

fields are concerned, the governing equations (eqs. (5) and (4b)) are of

the same form - in the linearized approximation - as those which govern

the pressure and velocity fields produced by injecting fluid (Isen-

tropically) into the medium. For, in the latter case, the momentum

equation in the linearized form is the same as equation (4b) while the

linearlzed continuity equation is given by

(7)
+ v. : po

where m is the rate at which fluid (measured in mass/volume/second)

is introduced into the medium. In fact, all one has to do to get the

same pressure and velocity fields for the two cases is to match the

parameter q/CpT o with m/p o. This suggests that the noise generated

in a nonuniform combustion (e.g., in turbulent combustion) will radiate

as a source field when examined at a large distance away from the com-

bustion region. (It is not known if any experiment has been carried

out in the study of this phenomenon. )

If 55 is eliminated from equations (5) and (4b) the pressure field

is found to satisfy the wave equation

_ =
_t 2 \TPo_ L_--oo/

(8)

It is clear from equation (8) that the pressure produced by heat addition

depends upon the rate of heat release, and whenever there is a change of

rate of heat release there will be pressure waves generated, a fact which

one should have expected in the first place.

Now consider the gases contained in a tube. The x-axis will be

chosen parallel to the axis of the tube. The heat added to the

medium q(x,y,z,t) is assumed to be given for t > O. For t _0,

q(x,y,z,t) is assumed to be identically zero. Now since

oo
q(x,y,z,t) = q(_,y,z,t) 5(x- _) d_

oo

(9)

and equation (8) is linear (so that the superposition principle is valid),

it is clearly sufficient to analyze the effect of heat release when

= 1 _(y,z,t) 5(x - _), that is, when heat is added only at
q(x,y,z,t) p--_

the section x = _. The quantity _(y,z,t) has a physical meaning of

its own. It is the heat generated per unit area per unit time at the

section x = _, for
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#_(y,z,t) dy dz = Total heat generated at x = _ in unit time

where the integration is taken over the cross section of the tube at
x = _. _athematically, this amounts to finding the elementary solution
of equation (8), for once the pressure field produced by _(y,z,t) at
x = _ is known, the general case of heat release by arbitrarily distrib-
uted sources q(x,y,z_t) can be obtained by replacing the ter_ _(y,z,t)
in the formulas found for the pressure and velocity field with
Poq(_,Y,z,t) d_ and integrating them from _ = -_ to _.

By a translation of the coordinate axes the plane at which heat is
added can be madeto be the plane x = 0. The pressure field produced
by heat released at the plane x = 0 will then satisfy the differential
equation

v2( p aF (y,z,t)s(x 
 '2t2VToo)a°2

and the boundary condition

P (zz)

at the wall of the tube (Here -_• v stands for the normal vector to the

side of the tube.) Equation (ll), according to equation (4b), is an

equivalent statement of the requirement that there should be no flow

across the wall of the tube. If it is further assumed that initially

at t = 0 there are no disturbances inside the tube3 there are also

the initial conditions

ST o) --o (aea)
t=O

"_C-_o)] = 0 (12b)
t-'-0

The solution of the above problem can be facilitated with the aid of the

"reduction theorem" given below.
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Reduction Theorem

Let heat be released at a section x = 0 of a tube of constant

cross section and of infinite length at a rate of _(y,z,t) units of

energy per unit area per unit time. The pressure and velocity fields

generated as a result of this heat release are identical to those pro-

duced by two pistons at x = Oi moving away from each other (along the

axis of the tube) with the same superficial velocity Z - 1 _(y3z3t).
27 Po

In this manner, the problem of pressure waves generated by heat

release is reduced to a problem of piston motion. This reduction

enables one to make use of the result of known theories (e.g., ref. 2)

for the problem at hand. It is possible to generalize the theorem to

a tube of, for example, finite length. This will be discussed later.

The proof of the reduction theorem is very similar to that used in

deriving the "impulse method" of solving a nonhomogeneous wave equation.

(See, e.g., ref. 3.)

Proof of Reduction Theorem

First of all, observe that every solution of equation (10) will be

a solution of the homogeneous wave equation at all points except x = O,

since 5(x) = 0 for x # O. Next perform an integration of equation (10)

with respect to x from -e to c and then let e--,O. If it is

assumed that _2 (Sp _ _2 _p _ and _2 _p \

_t2\TPo/' _y2\TPo/' _z-_oo_ are bounded near x = 0,

a condition which can certainly be satisfied if e(y,z,t) is a function

smooth enough in y, z, and t, equation (10) becomes

(13)

By symmetry, 5P/TPo is an even function of x so that it is sufficient

to consider the pressure field in the region x > 0 only. Also, by

symmetry, (-_ = __(_.. bp_O)x=_0_ _O0)x=O+ SO that equation (15)canbe

written simply as

5p

2ao 2 7 Po

(z3a)
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In other words, if 5P/7Po is a solution of equation (i0), it must also

satisfy condition (13a) as x-_O+. Consequently, the solution 5P/TPo

of equation (lO) satisfying conditions (ll) and (12) must satisfy the

homogeneous wave equation

 2fsp _ 2 5p
8t2\Tpo, ao2v ( oo)=0

for x > 0 as well as conditions (Ii), (127, and (13a). But the

pressure field in the region x > 0 produced by a piston at x = O+

moving with a superficial velocity

U(y,z,t) = 7 - 1 _(y_z_t) (15)

27 Po

in the x-directlon will precisely satisfy equations (ll), (12), (13a),

and (14) for x > 0.1 Moreover, since the pressure field generated by

a moving piston is uniquely determined in the linearized theory 3 it is

also the only solution which satisfies equations (ll), (12), (13a), and

(14). Consequently, the pressure field generated by heat release and

piston motion must be identical. The velocity produced by heat release

and by piston motion are also identical for x > O, since in both cases

the velocity and pressure are related by formula (4b) and

bt\ o/

in this region. (Cf. eq. (5) and observe that q(x,y,z,t) =

i _(y,z,t)5(x) and 5(x) = 0 for x _ O. Hence q = 0 for
Po

This completes the proof of the reduction theorem.

x o.)

It is clear from the above proof that the same conclusion will

hold for tubes with nonuniform cross sections which are symmetrical

about the plane x = O. It also holds for tubes of uniform section of

finite length provided that it is limited to the region ahead of the

wave front reflected from the end of the tube. For the most general

case, in which no such restrictions are imposed, a similar but less

simple analogy can be constructed. In this case the two pistons will

be moving with different velocities, and they are so related that not

IThat it satisfies equation (13a) follows from the momentum

equation in the x-direction (eq. (4b)), the boundary condition that

there should be no flow crossing the face of the piston, and equa-

tion (15).
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only is equation (13) satisfied but also the condition

(8_oo) = (5_o) is fulfilled. (The equality of pressure is a
x=O+ x=O-

direct consequence of momentum balance at the section x = 0 when all

the second-order terms are neglec_d.) In the next section, applica-

tion of this reduction theorem will be given.

The reduction theorem was originally formulated as a means of

reducing a problem of heat addition to a problem of piston motion.

However, the fictitious pistons described in the theorem actually have

a real physical significance. It has been shown in the introduction

that when heat conduction is neglected the flow field resulting from

heat addition into a medium is really caused by the volumetric expansion

of the hot gas resulting from the heating. In the case of heat addition

at one plane (say, x = _, the rate of this expansion can be calculated.

In fact, the faces of the two fictitious pistons must be precisely the

two interfaces which separate the cool gas from the heated gas, since

they start from x = 0__ at t = 0 and move out with a speed equal to

the speed of the fluid particle.

Dr. Harold Mirels pointed out that the reduction theorem states

that the pressure and velocity fields produced by addition of m units

of energy per unit time per unit area are equivalent to those produced

by two pistons at x = O_ moving away from each other with velocity

5u=_ -I_

27 Po

7 - 1

However, the rate of work done by such pistons is 2PoSU = __,

1
whereas the heat input is _. Thus there are --_ units of energy

7

apparently unaccounted for. He went on to say that this is due to the

step-function behavior of mass and energy at x = 0 (as can be deduced

for the particular case discussed in the next section from equations (22)

to (24)).

A more direct physical explanation of the energy that appears

"unaccounted for" is the following. The _ units of heat energy per

unit area per unit time added can be divided into two parts: That

esponsible for the setting up of the pressure and velocity fields

which, according to the reduction theorem, must be equal to

_l)2PoSU = _ _ _ , and that responsible for heating up the medium. On

the other hand, in the case of the flow field produced by the piston

motion, all the energy goes into the setting up of the pressure and

velocity fields. The amount of energy that was previously unaccounted
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for must then be the thermal energy stored in the hot gas. This can
be seen from the following calculation. Fromthe reduction theorem,
it is concluded that the flow fields produced by heating and piston
motion are identical up to the faces of the pistons. In the case of
heat addition, the hot gas filled the space between the faces of the
two fictitious pistons. In a time interval St, the increase in volume
of the hot gas is 2ASuSt, where A is the cross-sectional area of the
tube. The internal energy stored in the hot gas is increased (during
the sameinterval) by 2ASuSt(Do+ 5P)Cv(To + aT), that is, by

ASuSt(po + 5p), or, to the order of the llnearized approximation,7 1
2

simply by --_PoSuStA. Hence the rate of increase in the internal
energy stored in the hot gas per unit cross-sectlonal area at any instant

t is _2 Po_U= 2_____7i PoI_-z1_o)27 = _-'_°which is exactly equal to

the amount of energy that appears unaccounted for if only the flow field

produced by the fictitious pistons is examined. (The above calculation

is made for the case _ = Constant across the cross-sectlonal area of

the tube. For the more general case _ = _(y,zjt), the same calculation
g_

applies except that one should write the integral ./" dA instead

of A in the calculation.)

In the linearized theory presented here, only the effect of com-

pressibility has been taken into account and the effect of heat conduc-

tion has been neglected completely. Linearized theory taking heat

conductivity into account was recently investigated by Wu (ref. 4).

APPLICATION OF REDUCTION THEOREM

As an application of the reduction theorem, consider the case

where

_(y,z,t) = _(t) (16)

that is, the case in which heat is uniformly released at the plane x = O.

According to the reduction theorem, the pressure and velocity fields

induced are the same as those generated by two pistons at x = O!. moving

away from each other with velocities

u(t) :  (t)po (17)



14 NACA _ _ii

respectively. If the tube containing the gas is of constant cross

section, the pressure and velocity fields produced by the pistons will

be one dimensional, and they are given by the well-known formulas

_ Z-1 _ -= for x > 0 (18a)

7Po 27 aoP o

5p___= 7 - i for x < 0 (18b)

7Po 27 aoP o

27 Po

,u
27 Po

for x > 0 (19a)

for x< 0 (19b)

In particular, if the rate of heat release is constant for

that is,

_(t) = J 0 for

L _o for

t>0,

t>ot<°} (20)

or, written in terms of the step function, o(t) = c_H(t), the pressure

field is given by

5P-_-= 7 -171°o 27 aoPo_°H<t - _o) for x >0 (21a)

5P___= 7 - I _o H<t + _o) for x< 0 (21b)7Po 27 aoPo

This shows that, when heat is released at a constant rate of _o units

of energy per unit area per unit time into the medium, two compression

waves of equal strength are generated and propagate away from the heating

zone. These compression waves have a strength, measured in terms of the

ratio of pressure Jump 5p across the wave to the undisturbed pres-

sure Po, equal to _ - 1 ab It is thus seen that the strength of
2 aoP o

the pressure waves produced by heat addition to the medium is usually

small. {Thus, if ab = lO Btu per square foot per second,
\
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ao = 1,000 feet per second, and Po = 2,000 pounds per square foot,

then 8__p= 0.2 X i0 x 778 = 778 x 10 -6 = 0.078 percent.) When the
Po 1,000 x 2,000

rate of heat release is high, the pressure waves generated may be quite

intense. However, for a very high rate of heat release the above formulas

can no longer be used. In fact, the formula is correct only if the non-

dimensional heat-release parameter ab << i, since it is based on a
aoPo

linearized theory. However, the simplicity of the pressure and velocity

field predicted from the linearized theory in the last instance leads

one to suspect that an exact solution can be found by replacing the

infinitesimal pressure steps by two shock waves. The main problem is

again to determine the strength of the shock wave, given the rate of

heat release ab/aoP o. This problem will be considered in the next
section.

It is seen from equations (18) and (19) that the pressure is con-

tinuous at x = O, but the velocity is discontinuous there, since

(SU)x=O+ = _7 1 _(t)Po

(SU)x=O_ = __- - 1 0_(t)
27 Po

The fact that the flow is leaving the section x = 0 at both x = O+

and x = O- leads one to inquire if all the conservation theorems are

really satisfied at x = 0. (It is certainly obvious that they are

satisfied at all values of x # 0.)

It will now be shown that these laws are indeed satisfied at x = O.

For this purpose it is necessary to calculate the density and temper-

ature field. Integrating equation (4c) with respect to t,
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By equation (4d),

_t

5T _ 7 - 1 5p + j _t)8(x) dx =
TO 7 Po 0 PoCpTo

F o<t 
27 a-o_o" + % _Cp_o

27 aoP o _00 t
+ 5(X) cu(t)

PoCpTo

dt for x > 0

-- dt for x < 0

,(23)

Consider a control surface formed by the planes x = ¢, x = -e (where

e may be any number, large or small), and the segment of wall of the

tube between these planes. Let A be the cross-sectional area of the

tube. The conservation of mass and energy can be expressed as

-_-_ e pA = 2p(e,t)u(E,t)A
(24a)

_t!/e (E 1 )dxl 2p(e,t)u(e,t)A(E + _ )x=_
- p + _ u2 A = i u2

+ L>p(e,t) u(e,t)A -

(24b)

Substituting equations (5), (18), and (19) into the above equations and

neglecting the second-order small quantities (in accordance with the

linearized approximation), it is found that equations (24) are indeed

satisfied for all values of e. (By reason of symmetry of the flow field

with respect to x = 0, the momentum equation formulated for the same

control surface is automatically satisfied.) If ¢ is taken as an

arbitrarily small number, this establishes the validity of the conserva-
tion laws at x = O. If e is chosen large enough to enclose the whole

disturbed field, it establishes the validity of the over-all conservation

laws for the system. Note that these conservation laws will not be

satisfied if the pressure and velocity fields are related to the rate of

heat release _ in any other manner than by equations (18) and (19).

There are two aspects of this analysis which deserve some criticism.

First of all, it is clear from equation (25) that, in general, 5T/T o

is infinite at x = 0. This is, in fact, a direct consequence of the

addition of a finite amount of heat in a plane. Since a "plane of gas"

(instead of a volume) possesses no heat capacity, the temperature must

become infinite. Now, if 5T/T o is infinite, the linearization must

break down at x = 0 so that the solution really does not represent any
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physical state of affairs at x = O. Secondly, the density BP/Po,
according to equation (22), becomes -_ at x = 0. Here there is not
only an infinity but also a negative density which is not even physi-
cally conceivable. It will be seen in the next section that the nega-
tive density is really a consequenceof linearization.

Despite the absurdity of the behavior of the solution at x = 0,2
all the other conclusions derived above, such as the dependence of the
strength of the pressure wave on the rate of heat release (eq. (21)) are
to be trusted because only this dependencewill insure the conservation
of energy, mass, and momentumlocall_ at all points as well as for the
whole system (i.e., over-all balance). This state of affairs will be
clarified when an exact solution is constructed in the next section.

Other evidence which indirectly Justifies the value of this solution
is found when use is madeof the above solution to get the pressure and
velocity fields produced by heat sources q(x,t) which are not distrib-
uted in one plane but over a region (volume) of the tube. According to the
rule given (see eq. (9) and the paragraph following it)_ it is necessary
only to replace x in formulas (18), (19) , (22)_ and (23) by x-
(i.e., perform a translation) and then replace the function _ in these
formulas by Doq(_,t) d_, and, finally, integrate _ from -_ to _.
Thus, the pressure field is given by

I + x7P--_ 27 ao_o Poq _,t x _ . d_ + Poq ,t + ao
oo

But, since q(_,t) - 0 for t < 0, the last formula can also be written

as

_x X _xX+aot q(_,t + x ao._)

_ 1 x q(_,t a°_) d_ d5p + (25)

7Po 2_o _aot CpTo CpTo

which is well known as the correct solution of the one-dimensional-wave

e quat ion
F -'I

__(Sp _ 32 _Sp _ ____Lq(x,t)I

8t2\TPo] - a°2 _x2_oo) = 3tLCpToJ

subjected to the
\z_o/ t=0 t=0

2To be sure, to begin with, it is physically impossible to add a

finite amount of heat in a plane (instead of a volume) of gas. However,

this is beside the point because thisstate of affairs can at least be

approximated in practice.
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Likewise, the velocity, density, and temperature fields are given by

I x_ l
= iLx q _,t-- ao d_ i d_ (26)

5u _ -aot CpT-o - 2 Jx CpTo

2ao[ X_aot CpTo

x ]LtfX+aot q(_,t + a--o _) d_ - q(x,t)
x CpTo CP To

dt (27)

___ST-7-l[FX q(_,t X_ok )d_+

_o _o l___ot _o
k.

X - _I _0t q(x_t)
÷ +

CpT o CpTo

dt (28)

Note that in the expressions for the temperature (eq. (28)) and density

(eq. (27)) the "infinities," which were originally contained in expres-

sions (22) and (23), disappear after superposition.

To get some idea as to the pressure and velocity distributions inside

a narrow (but nonzero) band of heating zone, a calculation is made for

the case

f

q(x,t) = j0

for

Lqo for

where c is some small number.

tions for various times are shown in figure 1.

t<_ O; also for t > 0 if Ixl > c

t > 0 and ixl < c

Typical pressure and velocity distribu-

The solid lines in figure i are the pressure and velocity distribu-

tions. The dotted lines are the construction lines. Points between aa'

do not realize the heating zone is cut off at x = ±c and think that it

extends from -_ to _. By symmetry, therefore, the fluid particle tends

to move toward neither the left nor the right. Hence in this region

8u = O, and the density, by the continuity equation, remains unchanged,

while the pressure increases linearly with the temperature (constant-

volume combustion). Points between ab do realize that the heating zone
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is cut off at x = ¢ but do not know if it is also cut off at x = -_.
The pressure and velocity differ at different points in ab depending
on how mucheach point knows about the conditions at each side of the
point x = c. The sameremarks hold for points between a'b'.

Before concluding the discussion of the reduction theorem, one
should mention that whenheat is released uniformly at one plane, that
is, _(y_z,t) = _(t), it is possible to construct a third analogy,
namely, that between the pressure waves generated by heat release and a
two-dimensional airfoil in supersonic flow._ For the reduction theorem
shows that the pressure field produced by heat release satisfies the
system of equations (14), (13), (12a), and (12b), which in the present
case become

= o (29a)

ao2 -tL2 poj

5_oo) = o (294
t=O

:ot=O

(29a)

On the other hand, if a syn_netrical two-dlmenslonal airfoil y = if(x)

in a uniform supersonic stream of N_ch number M is considered, the

pressure field produced by the airfoil satisfies the following set of

equations:

5p = _-Mo 2 _-_ f(x) (3Oh)

i
3The author is indebted to Dr. L. S. G. Kovasznay for suggesting

this analogy in the early stage of this analysis.
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5 oo) : o (3oc)
x=O

x=O

= o (30d)

(According to the momentum equation in the y-direction eq. (30b) is

equivalent to the statement that the flow at the surface of the airfoil

must be tangent to the airfoil. The last two conditions are equivalent

to the statement that there should be no incoming waves in the flow

field. )

A comparison of equations (29) and (30) shows that there exists an

analogy between the pressure field developed by the uniform heat addi-

tion at a plane and the two-dimensional symmetrical airfoil in a super-

sonic stream. In fact, it is necessary only to imagine the time coordi-

nate as the space coordinate in the direction of the supersonic stream

and choose M2 = i + _ and the shape of the airfoil according to the
ao2

formula f(x) = Y - i i _(x)

27 i + ao2 Po

EXACT SOLUTION

Let heat be uniformly released at the section x = 0 of a tube of

constant cross section and of infinite length at a constant rate of _o

units of energy per unit area per unit time. (Hence, if the total heat

released per second is Q and the cross-sectional area of the tube is A,

ab = Q/A.) When the nondimensional heat-release parameter _o/aoPo was

small compared with unity, two compression waves of strength Z - 1 _o
2 aop o'

propagating away from each other with the velocity of sound ao of the

undisturbed medium, were found to be generated at x = 0 (see eq. (21)).

When C_o/aoP o is not small, equation (21) is no longer valid. Further-

more_ it is expected that_ instead of the two infinitesimal pressure

steps_ two shock waves would be generated. The question is again to

determine the strength of the shock wave generated, given the rate of

heat release per unit area _o"
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The linearized solution (21), though invalid for a high rate of

heat release, does suggest the following propositions:

(_ The shock waves generated at x = 0 are of equal strength and

will maintain their strength as they propagate away from each other.

(2) The pressure between the tvo shock waves is uniform and equal

to the pressure immediately behind the shocks.

(3) The velocity field behind the shock waves is discontinuous at

x = 0 and is an odd function of x. It is uniform for the regions x > 0

and x < 0, respectively, and assumes the value of the velocity of the

gas immediately behind the shock in the region x > 0 and x < 0,

respectively.

In addition to these propositions, due account will be taken of the

motion of the fluid particles which is neglected in the linearized theory.

It would be expected that:

(4) Two contact surfaces which form the boundaries separating the

hot and cool gas are generated at x = 0 at the instant when heat is

first added to the medium and move away from each other with the velocity

of the fluid particles.

(5) Since the hot gas originated from a single plane x = 0, the

temperature of the gas between the two contact surfaces must tend to

infinity.

(6) For the same reason, the density of the hot gas between the two

contact surfaces must tend to zero in such a manner that pT = Constant

in accordance with the gas law pT = p/R and proposition (2).

_nese propositions can be substantiated by a formal argument based

on dimensional reasoning. The argument goes as follows: The undisturbed

medium can be characterized by two of its thermodynamic state parameters,

say, the pressure Po and temperature To. Since the velocity of

sound ao in the undisturbed medium is uniquely related to the temper-

ature To, Po and a o will be used as the two parameters characterizing

the undisturbed medium. The strength of the shock wave can be described

in terms of the pressure ratio Pl/Po across the shock, where Pl is

the pressure immediately behind the shock. It is clear that, in general,

the strength of the shock wave depends on the rate of heat release per

unit area _o, the state of the undisturbed medium being characterized

by Po and ao as well as by the time t. That is,

: F( o,ao,Po,t)
PO

(31a)
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Since the viscous and heat-conductive effects have been neglected in

this preliminary study, these variables do not enter into equation (31a).

Also, for uniform heat release in a tube of constant cross section the
flow field is one dimensional so that the dimension of the tube does not

enter into the problem as a relevant characteristic length. Now equa-

tion (_la) must be dimensionally correct. But the four variables a_,

Po, ao, and t can only be combined into a single nondimensional param-

_o which does not contain the variable t. Consequently,
eter, namely, aoP---_,

Pl=po FI _(a_o) (31b)

that is, the shock strength must be independent of the time t, which

proves proposition (1). Clearly this conclusion is actually a direct

consequence of the fact that there is neither a characteristic time nor

a relevant characteristic length in the problem.

Likewise, the pressure, density, temperature, and velocity of the

flow behind the shock waves will be functions of ab, ao, Po, and t.

In addition, they can be functions of the position x. The five vari-

ables ab, ao, Po, x, and t can be combined to give two independent

nondimensional parameters, namely, _ and __x_x. Therefore,
aoP o aot

(32a)

ao

(52b)

and so forth. In other words, the flow field must be "conical." Intro-

ducing a new independent variable _ = __x it is a simple matter to
aot'

reduce the governing partial differential equations (i.e., the continuity,

momentum, and energy equations) to a system of ordinary differential

equations with the independent variable _. It turns out that this

system can be integrated without difficulty so that explicit solutions

are obtained for the pressure_ velocity, temperature, and density fields.

The constants of integration are to be determined from the boundary

conditions at the shock. However, a simpler approach is to assume a

possible flow field which embodies all the features in propositions (1)

to (6) and then to verify that it indeed satisfies all the conservation

laws at all points.
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For the purpose of formulation, suppose for the time being that the

strength of the shock waves is known. Then the pressure Pl, velocity Ul,

temperature T1, and density Pl immediately behind the shocks are also

known. Since the shock strength is invariant with time, Pl, Ul, Pl,

and T1 will also be independent of time and are therefore constants.

To satisfy proposition (2), assume

p(x,t) = Pl for Ixl < Vst (55a)

where V s is the shock speed.

u(x,t) = { ul
-u I

Proposition (3) states that

for 0 < x < Vst

Jfor -Vst < x < 0

(33b)

As a consequence of this formula and proposition (4), the two contact

surfaces which separate the hot and cool gas must be traveling with the

velocity +Ul, respectively.

requires that

[

T(x,t) = J T1

[ T*

where T*

sition (6) requires that

01x,={;
where

that

(See fig. 2.) Proposition (5) then

for ult < Ixl < Vst 1

Ixl< f
(33c)

is to be taken as a temperature tending to infinity. Propo-

< Ixl<Vst 
Ixl< J

(33d)

is to be ta_n as a density tending to zero in such a manner

Pl
p'T*=--.

R

It is clear that this solution satisfies all the conservation laws

for any shock strength at any point in the flow field except perhaps at

x = O. For, if the flow field in the region x > 0 at any instant t

is considered, it consists of a shock wave at x = Vst , followed by a

flow with uniform pressure and velocity consistent with the shock rela-

tions, and a contact surface at x = ult , which moves with the fluid

velocity. Such a flow field certainly satisfies all the conservation

laws in the region x > O. Hence, what must be examined is the question

of whether the conservation theorems are also satisfied at x = 0. If

they are satisfied there, then the conservation theorems for the system

as a whole (i.e., over-all balance) will also be satisfied and the
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converse is also true. It is precisely this consideration that deter-
mines the strength of the shock wave.

Take a control surface consisting of the planes x = c, x = -c,
and the segment of the wall of the tube between them. The conclusion
will be the samewhether c is chosen to be an arbitrarily small number
or a number large enough to include the entire disturbed field. It is
found that the equations representing the conservation of massand
momentumare always identically satisfied no matter what is the shock
strength, while the energy equation is satisfied if and only if the
strength of the shock waves is such that the following condition

plUl =
27

is fulfilled. These statements can be proved easily if c is chosen to

be less than Vst. When c is taken to be larger than Vst the calcu-

lation is more involved, since use has to be made of the shock relations.

It will be shown how the calculation proceeds for this more involved

case (which incidently establishes the conservation laws for the system

as a whole).

Take c to be some fixed number greater than Vst. Then at time t

the shock waves will be at x = Vst and the contact surfaces, at x = ult

(see fig. 3). The total mass inside the control surface consists of three

parts: That between the two contact surfaces 2UltAp* , which is negligible

since p* tends to zero eventually, that between the contact surface and

the shock wave preceding it 2(Vst - ult)APl , and that between the shock

wave and the boundary of the control surface 2(c - Vst)Apo. Thus, the

total mass inside the control surface is

2ulAtp* + 2(Vst - ult)APl + 2(c - Vst)Ap o : 2UlAtp* + 2cAPo

where use has been made of the shock relation

 l(vs- Ul) = poVs

(i.e., the continuity equation at the shock). Now, since p* is actually

zero, the total mass contained in the control surface is invariant with

time for all values of t and is equal to 2_APo , the mass contained

inside the control surface before heat is released to the medium. This

demonstrates that the mass is conserved.
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The momentumequation, being a vector equation, is automatically
satisfied by virtue of the symmetry of flow with respect to the
plane x = O. Then consider the energy balance.

At the instant t, the energy inside the control surface also
consists of three parts. It is given by

i u12) + 2(Vst- ult)ADI(CvTI + i u12) +2UltAp*(CvT* + _

2(c- Vst)APoCvTo= 2 PlUltA + 2eAPoCvT ° +
7 - T

i _ CvTo )2tAVsPo(CvT I + _ u12

since p* tends to zero in such a manner that _f*T* = Pl/R.

has been made of the continuity equation at the shock (35)-

C i - CvTo) can be converted into PlUlterm VsP o vT1 + _ Ul 2

makes use of the shock relations

1
Cp(T i - To) = VsU I - _ Ul 2

Again use

The

if one

(36)

Pl - Po = PoVsUl (57)

I - !hv = UlPI2

which are nothing but the energy, momentum, and continuity equations at

the shock. Thus, the total energy contained inside the control surface

at the instant t is given by

PlUltA + 2eAPoCvT o + 2tAPlU I = 2eAPoCvT o + _ PlUl tA
7 i

The increase of energy in the control surface from the instant t to

the instant t + 5t is therefore (27/7 - 1)PlUlASt where 5t is

chosen so small that Vs(t + St) is still less than e. But the total

amount of heat released in time t is abASt. Consequently, the energy

will be conserved if and only if
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/--:-!_o
PlUl = 2y

which proves equation (34).

One is now in a position to relate the shock strength with the rate

of heat released per unit area ab. It is well known that the drift

velocity u I produced by a shock wave of strength Pl/Po is

_ i)
u_ _- Y\Po (38)
ao /Z + 1 Pl + 7_ - 1

V 27 Po 27

Substituting equation (58) into equation (34), the following relation is

found between the strength of the shock wave generated and the parameter

of rate of heat release ab/aoPo:

2 I P__Pl

.% _ 7- P-_- J (39)
a°P° /7+ 1 Pl -__+_ 1

I-

V 27 Po 2y

One can then solve the quartic equation for Pl/Po in terms of ab/aoP o-

A plot of Pl/Po versus _o/aoPo is given in figure 4. Obviously, this

curve has been constructed by finding the values of ab/aop o for a

sequence of values of Pl/Po" The results of this calculation are pre-

sented in the following table:

Pl
m

Po

2

4
6
8

_o

aoPo

7.54

51.8

65.2

105.7

Pl

Po

l0

i5
5o

_b

aoPo

152.5

290.9

i,867

It is interesting that for a very high rate of heat release the strength

of the shock wave varies with ab/aoP o according to a two-thirds law:

: o.325(% h213
Po \aoPo/

(4o)
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(The coefficient 0.525 corresponds to a value of 7 of 1.4.) Once

Pl/Po is known as a function of _o/aoPo, the complete flow field is

defined and given by equation (33)-

Application of the foregoing results to the approximate estimation

of pressure waves generated by autoignition of a mixture in a tube is
discussed in the section entitled "SOME APPLICATIONS OF THEORY."

THREE-DIMENSIONALTHEORY

In the present section, the linearized theory of pressure waves

generated by heat addition in three dimensions will first be discussed

briefly. Then the construction of an exact solution in three dimensions

which may be useful in predicting the asymptotic strength of the shock

wave generated by a closed flame front expanding uniformly will be

discussed.

According to the llnearized theory, the differential equation

governing the pressure field due to a moderate rate of heat release is

given by equation (8) .

is well known:

5p(x,y, zjt)- 1 j_" /'f" 1 _ I(f'Tl'_'t " _-_017Po 4_a° 2 -_' -_ -_ _ _- CP TO d_ dn d_

The solution of equation (8) in an open space

(41)

where r' : 7(x - _)2

field point (x,y,z)

+ (y _ _)2 + (z - _)2 is the distance between the

and the source point (_,_,_).

The special case in which heat is released at a given point in

space, say the origin of the coordinate system, is of particular interest.

This means that

q(x,y,z,t) : Q(t)5(x,y,z) (42)

where

as e--_O, of the function

5(x3y,z ) is the 8-function and can be considered as the limit,

1

_e3

for x2 + y2 + z2 > e2

for x2 + y2 + z2 < e2

(43)
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The function Q(t) has the physical significance of being the heat

release per unit time. Substituting equations (43) into equation (41)

and evaluating the integral,

5p(x,y,z_t) _ 1 1 _ 2a-oo (44)

ZPo 4_ao 2 r _t L CpT O J

where r is the distance _x 2 + y2 + z2.

A comparison of equations (21) and (44) shows that one of the

essential differences between the one-dimensional and three-dimensional

cases is that the pressure waves generated in the former case depend on

the rate of heat release (per unit area) while those generated in the

latter case depend upon the time rate of change of rate of heat release.

In practice, it is of some interest to know the pressure and

velocity fields produced by the sudden addition of a finite amount of

heat into the medium. Thus, the flow field produced by a spark discharge

is of this nature, although actually a linearized theory will not be

adequate to describe this phenomenon with precision. Assume the varia-

tion of rate of heat release with time as shown in figure 5. In other

words, at t = 0+, the rate of heat release Q(t) increases suddenly

from zero to a very high value and then decreases again to zero in a

short interval of time. The pressure waves generated, according to

equation (44), will vary with the derivative of Q(t) and will there-

fore consist of a very steep compression front followed immediately by

an expansion-compression zone (fig. 6). The velocity field produced

may be calculated from equation (5).

along any radial llne is

The distribution of velocity field

1 1 Q(t - _o)+ 1 1 8 FQ( t - _Q)]

Ur = 4_ r 2 CpT o 4_a o r CpTo J

Thus, the velocity distribution in the immediate neighborhood of the

origin behaves like an incompressible source field. Moreover, the

radial distribution of the velocity there varies llke Q (near field in

fig. 6), while that at a large distance away bears the same relationship

with the pressure as that existing in the theory of plane wave (far field

in fig. 6).

Next examine the possibility of constructing an exact solution in

three dimensions as was done before in one dimension. First, consider

the case in which heat is released at a uniform rate of Qo units of

energy per second at the origin. As in the preceding section, the

undisturbed medium can be characterized by its pressure Po and velocity
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of sound ao. Then the strength of the shock wave generated, measured
in terms of the pressure ratio Pl/Po across the shock wave, will, in
general, be a function of Qo, ao, Po, and time t. That is,

Pl (46a)
Po - F(Q°'a°'p°'t)

Nowthe four variables Qo, ao,
a single nondimensional parameter
be dimensionally correct, one has

Po, and t can only be combined into

Qo/aoSPot2. Since equation (46a) must

(46b)

Consequently, in this case the shock strength must be a function of

time - a fact which complicates greatly the construction of an exact

solution. Since it is physically apparent that increasing the rate of

heat release will increase the strength of the shock wave generated, it

is concluded from equation (46b) that the shock wave generated must

decay with time. A little reflection reveals in_nediately that the basic

reason why the shock strength should depend on t is the existence of a

time \/o Qo in the problem. It is also clear immediatelycharacteristic
o Po

that in order to produce a shock wave whose strength is invariant with

time one must add heat to the medium according to the law

Q(t) = _t 2 (47)

where m now has the dimension energy/time 3 • For, in this case, the

rate at which heat is released will be characterized by _ and the shock

strength Pl/Po should be a function of _, a o, Po, and t instead.

But the four variables _, ao, Po, and t can only be combined into a

single nondimensional parameter _aoSP o which does not contain!t.

Consequently, the shock strength Pl/Po will be a function of _/Poao 3

but not of t; that is,

- F a (48)

Po oSPo

The construction of an exact solution will be attempted for this case.

The "parabolic law" (equation (47)) is actually of some practical interest.

Thus, if a spherical flame propagates into the fresh gas with a constant
speed, the rate of heat generated by combustion is proportional to t2.
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Moreover, if the flame speed is small, the heat maybe thought of as
being released at the center of the sphere.

For the present case_ the pressure, velocity, density, and temper-
ature field must be a function of _, ao_ Po, r, and t. Just as in
the derivation of equation (32), a dimensional reasoning leads to the
result

7o •
o

($9a)

u u_ r

K_° = o3Po '
(49b)

and so forth, so that the flow field is again conical. It is also known

that there must be a spherical contact surface behind the shock wave

which separates the heated gas (i.e., the "fireball") from the cool gas

surrounding it. If the position of this spherical contact surface at

any instant t is denoted by its radius rc, then, in general,

r c = G(_ao,Po,t ) . In nondimensional form, this equation can be

written as

rc _G _ c_

a° t _ao,Po _ (50)

so that the contact surface must move out with a uniform velocity, or

the fireball must expand at a uniform rate. Consequently, the flow field

outside the contact surface will be exactly the same as that produced by

a solid sphere expanding at a uniform rate of aoG(--_-- _. But the air

\aolPo/

waves generated, by a uniformly expanding sphere have been solved by

Taylor (ref. 5)_4 so that the shock strength will be determined as soon

as the rate of expansion of the fireball is related with the nondi-

mensional heat-release parameter _/aoSPo. To find this relation it is

necessary to construct first a solution which is valid inside the

fireball.

Except at the origin r = 0 where heat is released, the fundamental

hydrodynamic equations governing the flow inside the fireball are

4In fact, the dependence of pressure and velocity field on r and

t in Taylor's solution satisfies precisely requirement (49).
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3t r2 3r
(51a)

u____ 8Ur_ = 8p (51b)p + Uteri "_-7

_----_tP( CvT + 12 Ur2) + l__r2_-_2pur( _T +l_r 2 Ur2)l = 0 (51c)

p = pRT (51d)

Just as in the preceding section, it is expected that the temperature T

in the fireball tends to infinity, while the density D of the gas there

tends to zero in such a manner that

p_ = p/_ (52)

If this assumption is made, then continuity equation (51a) is automati-

cally satisfied provided that u r is finite. The momentum equation (Slb)

will then be satisfied if p is independent of r. But according to

equation (49a), if p is independent of r it must also be independent

of t. Hence, it is assumed that

P = Pc

where Pc is the pressure at the contact surface. Finally, since

Pc
pT = -_-, the energy equation will be satisfied provided that r2u r is

a function of t only. To satisfy equation (49b), it is necessary that

ur = (Constant)t2/r 2. In fact, if Uc is the velocity of the contact

surface_

- for r > 0
u c

because, at r = r c (= Uct), ur must be equal to u c. (Note that ur

is indeed finite for all values of r > 0.) By symmetry, ur = 0 at

r = O.

Summarizing the results, the flow field inside the contact surface

is given by

P = Pc (53a)
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U C

u r = 0 at r = 0

T=T*

for r > 0 I

(53b)

(53c)

p=p* (53d)

where T* tends to _ and p* tends to zero in such a manner than

_f*T_ = Pc/R (54)

Note that inside the fireball the velocity distribution is llke an incom-

pressible source field (Just as that indicated by the linearized solution,

eq. (45)).

Up to now, the conservation laws have been satisfied at all points

inside and outside of the fireball, except at the point r = 0 itself.

An examination of the conservation laws at this point will enable one to

relate the velocity of expansion of the fireball u c and the pressure

in the fireball Pc with the heat-release parameter _ (see eq. (55))-

If u c is assumed to be known for the time being, Taylor's solution will

then give the shock strength Pl/Po and the flow field outside the fire-

ball as well as the value of Pc" It will be shown that the correctly

assumed uc must be that which yields a Pc consistent with equa-

tion (55)-

Consider a spherical control surface of radius e about the origin.

Take e so small that the control surface lies completely inside the

fireball. The continuity and energy equations formulated for this control

surface are:

g*4_r2 + p*u c =

_0 e P*(CvT* + lur2) 4_r2 dr + p*uc(t--_)2_vT* +

Uc2 4_¢ 2 + PcUc 4he 2 = at 2
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The first equation is automatically satisfied since p* ultimately tends

to zero• The second equation can be rewritten as

(t_) 2 i 4_e2 = _t 2Pc4_C 2
Uc 7 - i

+ PcUc

so that it will be satisfied if and only if

4--_PcUc3 =
7 - i

(55)

Finally, the momentum equation is automatically satisfied by virtue of

symmetry. Consequently, all the Conservation laws are satisfied every-

where provided that the flow field outside the fireball is described by

Taylor's solution, that inside the fireball, by equation (53), and equa-

tion (55) is satisfied. It is often more convenient to use the nondi-

mensional form _ of equation (55).

ao3P o 7 - 1L_o)\ao/

The table below is essentially a reproduction (in the notation of

the present paper) of table I of Taylor's paper (ref• 5), except that one

more column (the last column) has been added to give the corresponding

values of _o3Po in accordance with equation (55)- In the table Mc

is the _ch number of the contact surface and rI is the radius of the

shock wave. Other notations have already been introduced earlier.

Q ® @ ®

M c rl
r c

0

.2 4.93

.4 2.44

•5 1.95o
•6 1.763

•7 1.503

.8 1.392

i.o 1.256
1.2 i. 182

1.4 i.155
i.6 1.lO3
1.8 1.083

2.1 1.060

Pl

Po

i. 000

i. OO3

i. o5o

i,169
1.365

1.629

2.400

3.59
5.60
9.o6

17.95
Oo

®

Uc Pl Pc

ao Pc Po

@ ®

0.203 0.928 1.075

.410 .775 1.295

•523 .750 i.400

.638 .749 1.569

.761 -755 1.808

.891 .774 2.105
1.180 .811 2.959

1.520 .847 4.250

1.953 .887 6.32
2.56O .9i7 9.89

3.598 .92 19.7

.93

ao3P o

0

•392
3.89

8.73
17.74
34.7
64.9

212

65i
2,050

7,230

40,000

co
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Column _7_ of the table gives the heat-release parameter, while

column _ gives the strength of the shock wave produced. The dependence

of the shock strength on the heat-release parameter _/ao3Po is also

shown in figure 7. Column Q of the table gives the velocity of expan-

sion of the fireball relative to the sound speed in the undisturbed

medium. Column _) gives the pressure inside the fireball. Column

gives the ratio of the radii of the spherical shock and the fireball.

SOME APPLICATIONS OF THEORY

Consider first some possible applications of equation (59). It is

clear that in practice there are cases in which heat is released at a

uniform rate in a limited region (or a narrow band) of a tube. If the

axial dimension of this region is small compared with the length of the

tube, equation (39) would be expected to give approximately the correct

strength of the shock wave produced by the heat released. If the tube

is of infinite length then equation (59) would be expected to give the

asymptotic value of the strength of the shock wave developed, whatever

is the size of the region at which heat is actually released (provided

that this region is finite). A similar idea applies to some ignition

problems. Consider a tube of infinite length containing some combustible

mixture. Suppose that at t = O, for one cause or another, ignition

begins at one section, say at x = 0, of the tube. Thus, the mixture

may have been ignited by a hot surface or a grid, or automatically because

of the existence of a local high-temperature region. A flame is developed

and the combustion will tend to spread out into the fresh gas (see fig. 8).

If the flame spreads out at a uniform rate, the total amount of heat

generated as the result of combustion will be linearly proportional to

time t and the rate of heat release is therefore constant. Furthermore,

if the flame spreads out at not too high a speed, compared with the

velocity of sound in the surrounding medium_ the strength of the shock

wave generated would be expected to be approximately the same as if heat

had been released at a constant rate at the section x = 0. In fact, one

can calculate the strength of the shock waves generated. Thus, supposing

that the two flame fronts propagate away from the ignition plane x = 0

with a constant speed St, (the transformation velocity), the total amount

of heat generated in time t is 2PlStAQt where Pl is the density of

the medium behind the shock waves, A is the cross-sectional area of the

tube, and _ is the heating value of the mixture (in energy per unit

_ss). It follows therefore that the rate of heat release per unit area

is constant and given by

ab = 2PlStQ (56)
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and the strength of the shock wave generated can be solved from

equation (39)

7 i PokPo

Y'2--_i Pl + Y - iPo 7+ i

= 2  istQ
aoPo

(57)

where Pl is related to pl/Po by the Rankine-Hugoniot relation

l+]_+ lPl

Pl _ y - 1 Po

PlPo _ + n

7 - 1 Po

Nat_rally_ one likes to know if this gives the correct answer. Fortu-

nately, in the present case there is an independent method of calculating

the strength of the shock waves generated. Note that since the flow field

must be symmetric about the plane x = O, the same flow field would have

been produced if the tube had been closed off at x = 0 (fig. 9)- Now

a flame propagating away from the end of a tube must generate a shock

wave of such a strength that the boundary condition at x = 0 is satis-

fied. Let the shock wave have the strength Pl/Po where Pl is the

pressure immediately behind the shock. The shock will then induce a

flow giving rise to a drift velocity (fig. lO)

uI =

ao _l

7 + iPl+ _' - I
27 Po 2_

(58)

where a o is the velocity of sound in the medium ahead of the shock

wave. Since the flame is assumed to be propagating with a constant

speed St relative to the medium, it will be seen to propagate with

an apparent speed of uI + St . Now the flame itself induces a flow

behind it. From the viewpoint of an observer riding on the flame 3 the

burned gas is leaving the flame with a velocity equal to St nPl where
_2

Pl is the density of the gas ahead of the flame (i.e. 3 that behind the

shock wave) and _2 is that behind the flame. Hence, from the viewpoint

of an observer in the laboratory (i.e., one who is fixed with respect to

the undisturbed medium ahead of the shock waves), the burned gas will be
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Pl

moving away from the wall x = 0 with a speed equal to u I + St - St _-

But the boundary condition at the wall dictates that the velocity of the

flow at the fixed wall is zero. This condition is satisfied if

Ul + St _ St Pl = 0 or
P2

u::st{ - p2:) (59)

which together with equation (59) determines the shock strength since

Pl/D2 is a fixed ratio once the mixture is specified. Now, if u I is

small compared with the velocity of sound aI in the medium ahead of

the flame, a simple consideration of momentum balance at the flame leads

to the result 5

pl = P2 (6o)

Hence_ by the gas law, p!/_2 = T2/TI,and equation(59)becomes

Ul=St(_ -1) (61)

But consideration of energy balance at the flame front shows that

St
provided that --<< i.

aI

= Cp(T2- TI) (62)

Hence, equation (61) can be written simply as

stQ (63)
u I - CpTI

Substituting equation (63) into equation (58) and making use of the gas

law, it is found that the shock strength Pl/Po must satisfy the

equation

ao : l)
z- : stQ - 7\_- (64)

7 P:/Ol /7 + lpl + 7 - :
V 2y Po 2y

5For proof of eqs. (60) and (62), see, e.g., ref. 6 or 7.
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which after some simple reductions becomes identical to equation (57)-

Thus, it is seen that equation (57) indeed gives the correct value of

the strength of the shock wave generated by combustion. The fact that

in this case the shock strength can be predicted exactly by another

method has not made the usefulness of equation (39) less, for, in the

first place, it has strengthened confidence in its application to

practical problems, and, secondly, equation (99) can be applied to many

other cases (some of which have been mentioned at the beginning of this

section) where no other simple means is available for estimating the

approximate strength of the shock wave produced. Finally, the corre-

sponding problem in three dimensions can be solved by the theory

developed in the last section.

Mirels suggested that the condition under which the pressure wave

produced by flame propagation can be found by considering an equal rate

of heat release at a fixed station be considered. He noted that the

equivalence of these two approaches is indicated for the planar case

but is assumed for the three-dlmenslonal case. (See the statement after

equation (48): "If the flame speed is small, the heat may be thought

of as being released at the center of the sphere.")

In response to this suggestion, the author would like to add that

before any comparison can be made for the three-dimensional case the

exact solution for the flow field generated by a uniformly expanding

spherical flame must be known. This solution can, in fact, be constructed.

It may be worth while to point out that, depending on the values of the

flame speed and the heating value of the mixture, the flow field may

assume qualitatively different natures. When the flame speed and heating

value of the mixture are low enough (the present case), the flow field

outside the flame front is similar to that generated by a uniformly

expanding sphere, the speed of expansion of which is related to the flame

speed and the heating value of the mixture. Inside the spherical flame

the medium is at rest. When the flame speed and heating value of the

mixture are high enough, the flow field inside the spherical flame is no

longer entirely at rest. There is now a family of central-expansion

spherical waves following immediately behind the flame front which is

now propagating at the lower Chapman-Jouguet speed. The flow field

outside of the flame front is still similar to that generated by a

uniformly expanding sphere. When the flame speed and heating value of

the mixture are extremely high, the flame front catches up with the shock

wave to form a detonation front right after the mixture is ignited. This

last case has been analyzed by Taylor (ref. 8) and independently by

Doering and Burkhardt (ref. 9)- However, all these exact solutions

cannot be given in closed analytic forms which involve only the elemen-

tary transcendental functions. When the flame speed is small, the shock

wave generated by the flame is extremely weak, mainly because of the

fact that the shock wave is propagating into an open space. On the other

hand, the equivalence of the flow field produced by the flame and a heat
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source releasing heat at an equivalent parabolic rate is true only when
the flame speed is small. Consequently, it does not seemworth while
from the practical point of view to look into this particular example
in any greater detail.

Whenhe was commentingon the equivalence of a flame front and a
heater, the following argument was also advanced by Mirels: It can be
shownfor the planar case that the equivalence of the two approaches
requires that the ratio of specific heats be the samefor the burned
and unburned gases and that the kinetic-energy terms be negligible. Take
the case of a flame originating at x = 0 at time t = O. The tx-diagram
is indicated in figure ll(a). The equivalent problem, with heat addition
at section x = O, is indicated in figure ll(b). Conditions in region (1)
of the figures are the samefor both cases but conditions in region (2)
differ. In addition, the extent of region (2) is greater in figure ll(a)
than in figure ll(b) since the flame movesfaster than does the contact
surface. However, the energy per unit volume of the gas behind the shock
(for a given shock strength) can be shownto be the samefor regions (1)
and (2) and for figures ll(a) and ll(b). Neglecting kinetic energy, the
energy per unit volume is

E = PCvT-
P

7 -1

Since p is constant behind the shock, the energy per unit volume is
constantprovlded _ is the samefor the burned and unburned gases.
Therefore the details of the temperature and density distributions
behind the shock are unimportant. The strength of the shock depends on
the rate of heat addition and the two approaches are equivalent.

With regard to this discussion, the fact that a flame front and a
heating element are dynamically equivalent6 whenthe ratio of specific
heats is the samefor the burned and unburned gases and when the flame
speed is small comparedwith the local sound speedwas independently
found by the author in his study of the mechanismof generation of pres-
sure waves at a flame front (ref. lO). Actually, the statement is rigor-
ously true only if there is a current of flow through the heating element
with velocity equal to the flame speed. The rigorous demonstration will
not be presented here.

6Whenthe pressure and velocity fields produced in two systems are
identical, the systems are said to be "dynamically equivalent." Note
that the temperature and density fields produced in the two systems need
not be the same.
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CONCLUDINGREMARKS

Whenthe effect of heat conductivity is neglected, the flow field
resulting from the addition of heat into a mediumis caused by the
volumetric expansion of the heated gas. Whenthe rate of heat release

is moderate, a "reduction theorem" can be derived which reduces the

problem of he_t addition in a single plane in a tube of constant cross

section to a problem of piston motion in the tube (the plane of heat

addition being perpendicular to the tube axis). The fictitious pistons

in the theorem correspond in reality to the interfaces which separate

the heated and unheated gases. The solution for the more general case

of heat addition in a region inside the tube can be constructed by

superposition.

The exact solution for the flow field produced by uniform heating

in a plane at a constant rate is also given. In particular, the strength

of the shock waves resulting from such heating is calculated in terms of

the (constant) rate of heat release. The formula also gives the asymp-

totic strength of the shock waves resulting from heating at a constant

rate a finite volume of gaseous medium inside an infinitely long tube of
constant cross section.

When the heat is added into the medium at a single point at a rate

proportional to the time squared, the heated gas expands at a uniform

rate, much like a uniformly expanding sphere. Taylor's solution enables

one to calculate the relation between the shock wave produced and the

rate of heat release. This relation also represents asymptotically the

strength of a pressure wave generated by a closed flame front in a

combustible mixture expanding uniformly at a constant speed which is

small compared with the local sound speed.

The Johns Hopkins University,

Baltimore, Mi., December ii, 1953.
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Figure 5-- Rate of heat release of a spark.
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(b) Velocity field.

Figure 6.- Pressure and velocity fields produced by a spark.
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Figure 8.- Pressure waves generated as a result of ignition of a mixture

in a tube.
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Figure 9.- Ignition of a mixture at a closed end of a tube.
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Figure i0.- Verification of equation (57) for a particular case.
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